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Dynamic Modelling of Planar Mechanisms Using 
Point Coordinates 
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In the present study, the dynamic modelling of planar mechanisms that consist of a system of 

rigid bodies is carried out using point coordiantes. The system of rigid bodies is replaced by a 

dynamically equivalent constrained system of particles. Then for the resulting equivalent system 

of particles, the concepts of linear and angular momentums are used to generate the equations 

of motion without either introducing any rotational coordinates or distributing the external 

forces and force couples over the particles. For the open loop case, the equations of motion are 

generated recursively along the open chains. For the closed loop case, the system is transformed 

to open loops by cutting suitable kinematic joints with the addition of cut-joints kinematic 

constraints. An example of a multi-branch closed-loop system is chosen to demonstrate the 

generality and simplicity of the proposed method. 

K e y  W o r d s  : Dynamic Analysis, Recursive Formulation, Equations of Motion, System of Rigid 

Bodies, Open-Chain, Closed-Chains 

I. Introduct ion  

Many formulations have been used to carry out 

the dynamic analysis of planar mechanisms. Some 

formulations (Dix and Lehman, 1972; Orlandea 

et al., 1977; Nikravesh, 1988) use a large set of 

dependent coordinates. The location of each rigid 

body in the system is described in terms of a set 

of absolute coordinates; translational and rota- 

tional coordinates. The constraint equations are 

imposed to represent the kinematic joints that 

connect the rigid bodies. This formulation has 

the advantage that the constraint equations are 

easily introduced, however, it has the disadvan- 

tage of a large number of coordinates defined. 

Other formulations (Denavit and Hartenberg, 

1955 ; Sheth and Uicker, 1972) describe the con- 
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figuration of the system in terms of relative 

coordinates. The location of each body is defined 

with respect to the adjacent body by means of an 

angle or a distance depending on the type of the 

kinematic pair joining the two bodies. Although 

this formulation yields the constraints as a minim- 

al set of algebraic equations, it has the disad- 

vantage that it does not directly determine the 

positions of the bodies and points of interest. 

Other methods for generating the equations 

of motion use a two-step transformation. They 

group the advantages of the simplicity, generality 

and efficiency. One method (Jerkovsky, 1976; 

Kim and Vanderploeg, 1986; Nikravesh and 

Gim, 1989) uses initially the absolute coordinate 

formulation. Then, the equations of motion are 

expressed in terms of the relative joint variables. 

Another method (Attia, 1993; Nikravesh and 

Attia, 1994) uses initially a dynamically equiva- 

lent constrained system of particles to replace the 

rigid bodies. The mass associated with each par- 

ticle is determined as a function of the inertia 

characteristics of each body. The external forces 
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and couples acting on the body are transformed 

to equivalent forces and redistributed over the 

system of particles. The equations of motion are 

derived using Newton's second law and the La- 

grange multiplier technique which results in a 

large number of differential-algebraic equations. 

The simplicity and the absence of any rotational 

coordinates t¥om the final form of the equations 

of motion are considered the main advantages 

of this formulation. For the purpose of computa- 

tional efficiency, the equations of motion that are 

expressed in matrix form in terms of the Cartesian 

coordinates of the particles are rederived in terms 

of" the relative joint variables. The main disad- 

vantage of these two-step transformations is the 

necessity to transform at every time step from the 

joint variables to the original system (.the abso- 

lute coordinates or the Cartesian coordinates of 

the particles). This transformation process which 

is known as the forward process (Nikravesh and 

Gim, 1989 ; Attia, 1993) is very time consuming. 

In the present paper, the dynamic modelling of 

planar mechanisms that consist of a system of 

rigid bodies with all common types of kinematic 

joints such as revolute and prismatic is carried 

out using point coordinates. The method rests 

upon the idea of replacing the rigid body by its 

dynamically equivalent constrained system of par- 

ticles discussed in (Attia, 1993; Nikravesh and 

Attia, 1994). However, instead of the matrix form 

of the equations of motion derived in (Attia, 

1993; Nikravesh and Attia, 1994), a more effi- 

cient recursive approach is used. For the resulting 

equivalent constrained system of particles, the 

concepts of linear and angular momentums are 

used to generate the equations of motion without 

either introducing any rotational coordinates or 

distributing the external forces and couples over 

the particles. For the open loop case, the equa- 

tions of motion are generated recursively along 

the open chains instead of the matrix formulation 

derived in (Attia, 1993). Geometric constraints 

that fix the distances between the particles are 

introduced while some kinematic constraints due 

to commom types of joints and the associated 

constraint forces are automatically eliminated by 

properly selecting the locations of the particles. 

For the closed loop case, the system is transform- 

ed to open loops by cutting suitable kinematic 

joints and introducing the cut-joint kinematic 

constraints. The special case of a system of rigid 

rods is also discussed. The dynamic analysis of a 

multi-branch closed-loop mechanism is carried 

out to demonstrate the generality and simplicity 

of the suggested method. 

2. The Dynamic Model 

2.1 Construction of the equivalent system of 
particles 

The requirements of equivalence of the mass, 

the position of center of mass, and the elements of 

the inertia tensor in the plane motion lead in 

general to six conditions. In this case, as shown in 

Fig. I, six particles are chosen to represent the 

Fig. l The rigid body with its equivalent system of 
three particles 

Fig. 2 

/ / ,  

Serial chain of N rigid bodies with the 
equivalent particales 
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rigid body in order to obtain a linear system of 

six equations in six unknown masses• Then the 

coordinates of the six particles become free varia- 

bles and can be arbitrarily chosen to achieve 

additional requirements. Three particles 1, 2 and 

3, named as primary particles, are located arbi- 

trarily, while the others 4, 5 and 6, named as 

secondary particles, are conveniently located at 

the mid-points of the lines joining each pair of 

particles. By this arrangement, the six conditions 

are written as: 

6 

Y f / =  ' ~ ,  TF/i  
i=  1 

la) 

6 

m r G = ~ . m l r i  
i= 1 

lb) 

6 
• _ _  2 2~--  ~ m~z/~ (lc) 

6 
• _ _  2 

i=1  

6 

j v ;=  ~lmiseir I, (le) 

where m is the mass of the rigid body, rG is 

the position of the center of mass of the rigid 

body, j~ ,  j~ ,  je~ are the components of the inertia 

tensor of the rigid body with respect to the body 

attached coordinate frame, m~ is the mass of par- 

ticle i and r~ is the position vector of particle 

i with respect to the body attached coordinate 

frame. The 6 × 6  linear system given by Eq. (1) 

can be put in the following matrix form, 

I I 1 1 I 1 

~t 72 ?73 74 75 ~6 

ml ;v~ 

m 2  m~( 

m3 = m 7 (  

m4 j~¢ 
I 

(2) 

It should be noted that in the case of a rigid 

rod, only three particles can dynamically replace 

it. In this case two particles can be located at both 

ends where the third particle can be located at 

the middle of the rod. Three linear algebraic 

equations can be solved for the three unknown 

masses of these particles. 

2.2 E q u a t i o n s  of  mot ion  of  a s ing le  rigid 

body in p lane  mot ion  
The rigid body, shown in Fig. 1, is replaced by 

an equivalent constrained system of six particles. 

The distances between the six particles are in- 

variant as a result of the internal constraint forces 

existing between them. The vector sum of these 

unknown internal forces and also the vector sum 

of their moments about any point equals zero by 

the law of action and reaction (Goldstein, 1950). 

Then, the linear momentum equation for the 

whole system of particles yields, 

6 

R ='~,,miP i (3) 
i - 1  

where R is the vector sum of the external forces 

acting on the rigid body and izi is the accelera- 

tion vector of particle i with respect to the global 

coordinate frame. Also, the angular momentum 

equation for the whole system of particles with 

respect to particle I takes the form (Goldstein, 

1950) 

6 

G1 = "~-].r iAxmir i (4) 
i = 2  

where G1 is directed perpendicular to the plane 

of motion and represents the vector sum of the 

moments of the external forces and lbrce couples 

acting on the body with respect to the location of 

particle 1 and r~l is the relative position vector 

between particles i and I. 

The distance constraints between the six par- 

ticles are given as 

T 2 _ _  r2,1rz,i - d ) ,1 -0  (5a) 

rr _ ~2 --0 (5b) 3 ,113 ,1  - -  6~3,1 - -  

T 2 r3,1r3,2-- d~a = 0  (5c) 

r4-- (rl + r z ) / 2 = 0  (5d) 

rs--  (r~ + r3 ) /2  = 0  (Se) 

r 6 -  ( r 2 + r 3 ) / 2 = 0  (5f) 

Differentiating Eq. (5) with respect to time leads 

to the velocity constraints 

r • 0 (6a) r2.1r2.1 = 

T • 0 r3,1r3,1 = (6b) 

r • 0 r3,2r3,2= (6c) 
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r4-- (P,-}-e2)/2:0 (6d) 

rs--  (r~-k-rs)/2=0 (6e) 

e~-- ( e2+r3 ) /2=0  (6f) 

Differentiating Eq. (6) with respect to time leads 

to the acceleration constraints 

r~a (i'2--iq) .r • (7a) : - r2ar2a 

T . . . .  rs , , ( rs - r~)  = ' ~ ' -r3ar3,, (7b) 

r ~ , 2  ( i ~ s - - i ' 2 )  • r • = - - r 3 . 2 r 3 , 2  ( 7 c )  

r4-- (iz, + r z ) / 2 : 0  (7d) 

1;5-- (f~+i~s)/2=0 (7e) 

~ -  (i'2 + ~ ) /2  =0 (7f) 

The equations of motion (3), (4) and (7) repre- 

sent a linear system of 12 scalar algebraic equa- 

tions that can be solved to determine the un- 

known acceleration vectors iz~, i = l ,  -.., 6 of the 

particles at any instant of time. They are express- 

ed in terms of the rectangular Cartesian coordi- 

nates of the equivalent system of particles. This 

groups the advantages of the automatic elimina- 

tion of the unknown internal constraint forces 

as in Newton-Euler formulation while expresses 

the general motion of the rigid body in terms of 

a set of Cartesian coordinates without intro- 

ducing any rotational coordinates. This process 

results in a reduced system of differential-alge- 

braic equations and also eliminates the necessity 

of distributing the external forces and moments 

over the particles. 

A reduced form of the equations of motion can 

be obtained by eliminating the secondary par- 

ticles and their unknown accelerations through 

the substitution of the constraint Eqs. (7d) to 

(7f) into Eqs. (3) and (4) to obtain 

3 

R :  ~-].mir i (8) 
i = 1  

3 

G~ = ~ A A ~  (9) 
i - - 1  

where 

s I 
m i = r n ,  +j~=l y m~.i (10a) 

j#-i 

a 1 
Ai=~T~ifi l+=~ 4- mj, if~,i (10b) 

j ¢ i  

3 
~ =  m i +  52, I J< ~ mj, i (10c) 

j *  i 

and where m~,~ denotes the mass of the secon- 

dary particle that is located between the primary 

particles i and j ( m l . z = m z a = m s ,  "'" etc.). Then, 

Eqs. (8) and (9) in addition to the remaining 

constraints Eqs. (7a) to (7c) represent the equa- 

tions of motion for a single rigid body where 

only the primary particles stay. 

The above linear system of Eqs. (8) and (9) 

represents the equations of motion of a single 

floating rigid body in plane motion. It can be 

solved at every time step to determine the un- 

known acceleration components of the remaining 

particles 1, 2 and 3. The acceleration components 

of the particles can be integrated numerically 

knowing their Cartesian coordinates and veloci- 

ties at a certain time to determine the positions 

and velocities at the next time step (Hairer and 

Wanner, 2001). The rectilinear motion of the 

particles determines completely the translational 

and rotational motion of the rigid body. If the 

rigid body is rotating about a fixed axis, then 

particle I may be located at the intersection of the 

body with the axis of rotation. In this case, Eq. 

(9) is used to solve for the unknown Cartesian 

accelerations of particle 3. Then Eq. (8) can be 

solved to determine the unknown reaction forces 

at the axis of rotation. Also, for the case of a rigid 

rod the second intermediate particle can be eli- 

minated and the equations of motion constitute of 

one moment equation, two scalar three equations, 

and one distance constraint. These four scalar 

equations are sufficient to solve for the unknown 

accelerations of the remaining end particles. 

3. Equat ions  of  M o t i o n  of  a Ser ia l  

Chain  of  Rigid Bodies  

Figure 3 shows a serial chain of N rigid bodies 

with the equivalent system of (2N+ 1) particles 

where connecting particles are unified from both 

bodies. For the last body "'N" in the chain, the 

equations of motion are derived in a similar way 
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3 

4 :/ 

Fig. 3 A multi-branch system indicating tbur cut- 
joints 

as Eq. (9) of a single rigid body. The angular  

momentum equat ion takes the form 

2 N + 1  

G2N-1 = ~, A/ i ' i  ( l l )  
/ = 2 N -  1 

where 

2i+1 I 
Ah=71~hfh,23.-l+ ~, ~ mk,hf~,2j-I (12a) 

k=2i 
k~eh 

2 i + 1  l 
~th=rt 'Zh+ ~ '  4- mk,h (12b) 

k = 2 i - 1  
k * h  

where GZN-1 is the vector sum of the moments of 

the external forces and force couples acting on 

body N with respect to the location of particle 

2N- -  1. The distance constraints are given as 

T 2 r2N,2N-Ir2~,ZN-X -- d~N,z~¢-. = 0  ( 1 3a) 

r f N + l  2 N - l r 2 N + I  2 N - 1  - -  2 , , d~+l,ZN-1 = 0  (13b) 

r r r ,42 2 N + I , 2 N  2 N + l , 2 N  - -  " 2 N + I , 2 N  = 0  ( 1 3 c )  

Addi t ion  of one more body in the chain leads to 

the inclusion of an angular  momentum equat ion 

that takes into considerat ion the contr ibut ions  of 

all the ascending bodies in the chain together with 

one distance constraint  between the particles be- 

longing to this body. These two equations are 

appended to the equat ions  of motion derived lbr 

the leading bodies in the chain. For  body j ,  the 

appended equat ions of motion take the form 

N 21+1 

G23. ~ = ~ ]  ~ Aki~k (14) 
i= jk=2 i - l l  

where 

2 N + I  ] 

A h = ~ ? ~ h f h , Z N - l +  k = 2 N  ~ T mk'hr~'2N-I (15a) 
k e h  

2~v+l 1 
r ~ , ~ = m h +  5?, 4 -  m~,,. (15b) 

k = 2 N - - 1  
k * h  

r2j,2j-r I ( i~2 j  - -  r 2 j -  1) - - - - - -  r 2j,2j-lr2j.2j-iT . ( 1 6 a )  

T . . . .  "T  • r23.+l,~-i (r23.+1 -- r2~-1) ( 1 6b) = - -  r 2 j +  1 , 2 j -  l r 2 j +  1.2, /-  1 

T . . . . .  T rz./+l,z3. (rz3.+ 1 -- rzj) ( l 6c) = - -  r23.+ 1,23.r 2 j +  i ,23 

where G23.-1 is the vector sum of the moments  of 

the external forces and force couples acting on 

tile chain starting from body j up till the last 

body N with respect to the location of particle 

2 j - -1 .  

If body "j" is the floating base body in the 

chain then, two scalar l inear momentum equa- 

tions, similar to Eq. (8), are required to solve for 

the unknown  acceleration components  of particle 

I. These linear momentum equations equate the 

sum of the external forces acting on all the bodies 

in the chain to the time rate of  change of the 

linear momentums of all the equivalent  particles 

that replace the chain and take the form 

N N 21 

~ R / = ~  ~ rhki~k=rh2~+li~2N+l 17) 
i=j i=jk=2i--1 

where 

2i+1 l 
Vnh=rnh+ 52, ~ mk,h 18) 

k = 2 i - - i  
k.*h 

In general, for a chain of N bodies, an equivalent  

system of ( 2 N +  1) particles is constructed. By 

el iminat ing the coordinates of N particles, we are 

left with N + I  particles and consequently,  2 N + 2  

unknown  acceleration components.  To solve for 

these unknowns ,  N angular  momentum equations 

can be generated recursively along the chain to- 

gether with N distance constraints between the 

pair of  particles located on each body. Finally,  

two linear momentum equations can be used to 

solve for the unknown  acceleration components  

of particle 1 or for the unknown  reaction forces 

if there is a fixation at point  1. If the chain is 

closed at its final end, a cu t - jo in t  at this end 

can be used to produce an open chain with the 

introduct ion of unknown  reaction forces. The 

cu t - jo in t  constraint  equat ions substitute tbr these 

u n k n o w n  reactions. 

If bodies "j'" and " j - - l "  are connected by a 

prismatic joint ,  then the jo in t  is cut and the 

original serial chain is separated into two serial 

chains. The equat ions of motion are generated 
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recursively along each of the resulting serial 

chains as discussed above with the added kine- 

matic constraints associated with the prismatic 

joint. Similar treatment can be used in dealing 

with all other kinds of lower or higher pair 

kinematic joints. 

In the case of a multi-branch open and/or  

closed loop system, it can be transformed to a 

system of serial chains (branchs) by cutting sui- 

table joints. Cut-joint  constraints and the ass- 

ociated constraint reaction forces are introduced. 

For the multi-branch system shown in Fig. 3, the 

system is divided into 4 chains by cutting the 

connection joints at points 1, 2, 3 and 4. Equiva- 

lent particles are conveniently chosen to locate 

at the positions of the connection joints and in 

terms of their Cartesian coordinates the cut-joint 

constraint equations are easily formulated. These 

kinematic constraints substitute for the unknown 

constraint reaction forces that appear explicitly 

in the linear and angular momentum equations. 

It is shown also in Fig. 3 that some bodies are 

connected with the others in many points. In such 

a case, though the number of particles that 

dynamically replace the rigid body is three which 

can be used to define two joints, more particles 

may be added to describe additional joints. 

It should be noted that in this formulation, 

the kinematic constraints due to some common 

types of kinematic joints (e.g. revolute or sphe- 

rical joints) can be automatically eliminated by 

properly locating the equivalent particles. The 

remaining kinematic constraints along with the 

geometric constraints are, in general, either li- 

near or quadratic in the Cartesian coordinates of 

the particles. Therefore, the coefficients of  their 

Jacobian matrix are constants or linear in the 

rectangular Cartesian coordinates. Where as in 

the formulation based on the relative coordinates 

(Denavit and Hartenberg, 1955 ; Sheth and 

Uicker, 1972), the constraint equations are deriv- 

ed based on loop closure equations which have 

the disadvantage that they do not directly deter- 

mine the positions of the links and points of 

interest which makes the establishment of the 

dynamic problem more difficult. Also, the res- 

ulting constraint equations are highly nonlinear 

and contain complex circular functions. The ab- 

sence of these circular functions in the point 

coordinate formulation leads to faster conver- 

gence and better accuracy. Furthermore, prepro- 

cessing the mechanism by the topological graph 

theory is not necessary as it would be the case 

with loop constraints. 

Also, in comparison with the absolute coordi- 

nates formulation, the manual work of the local 

axes attachment and local coordinates evaluation 

as well as the use of the rotational variables and 

the rotation matrices in the absolute coordinate 

formulation are not required in the point coordi- 

nate formulation. This leads to fully computeriz- 

ed analysis and accounts for a reduction in the 

computational time and memory storage. In ad- 

dition to that, the constraint equations take much 

simpler forms as compared with the absolute 

coordinates. 

The elimination of the rotational coordinates, 

angular velocities and angular accelerations in the 

presented formulation, leads to possible savings 

in computation time when this procedure is com- 

pared against the absolute or relative coordinate 

formulation. It has been determined that numeri- 

cal computations associated with rotational trans- 

tbrmation matrices and their corresponding coor- 

dinate transformations between reference frames 

is time consuming and, therefore, if these com- 

putations are avoided more efficient codes may 

be developed (Nikravesh and Attia, 1994). The 

elimination of  rotational coordinates can also 

be fbund very beneficial in design sensitivity an- 

alysis of multibody systems. In most procedures 

fbr design sensitivity analysis, leading to an op- 

timal design process, the derivatives of certain 

functions with respect to a set of design para- 

meters are required. Analytical evaluation of 

these derivatives are much simpler if the rota- 

tional coordinates are not present and if we only 

deal with translational coordinates. 

Some practical applications of  multibody dyna- 

mics require one or more bodies in the system to 

be described as deformable in order to obtain a 

more realistic dynamic response (Nikravesh and 

Attia, 1994). Deformable bodies are normally 

modeled by the finite element technique. Assume 



Dynamic Modelling of Planar Mechanisms Using Point Coordinates 1983 

that the deformable body is connected to a rigid 

body described by a set of particles. Then, one 

or more particles of the rigid body can coincide 

with one or more nodes of the deformable body 

in order to describe the kinematic joint between 

the two bodies. This is a much simpler process 

that when the rigid body is described by a set of 

translational and rotational coordinates. In gen- 

eral, the point coordinates have additional ad- 

vantages over the other systems of coordinates 

since they are the most suitable coordinates for 

the graphics routines and the animation pro- 

grams. 

Also, since we are dealing in this formulation 

with a system of particles instead of rigid bodies, 

therefore only the laws of particle dynamics are 

utilized in generating the equations of motion of 

the mechanical system. This makes the formula- 

tion much simpler than the other dynamic for- 

mulations which use the rigid body dynamical 

equations of motion both translational and rota- 

tional. In summary, the methodologies presented 

in this paper have many interesting characteris- 

tics which may be found useful in some appli- 

cations. These methodologies can be combined 

with other methods to develop even more effi- 

cient, accurate, and flexible procedures. It should 

be noted that there is no single multibody for- 

mulation to be considered as the best formula- 

tion for general multibody dynamics. Each for- 

mulation has its own unique or common fea- 

tures and, therefore, selected features should be 

adopted to our advantages (Nikravesh and Attia, 

1994). 

4. Dynamic Analysis of  a Mult i -  

Branch Closed-Loop System 

The planar three degree-of-freedom platform- 

type manipulator shown in Fig. 4 is chosen as 

an example of a multi-closed-loop system. The 

end-effector platform of the manipulator is con- 

strained by three serial link trains each of which 

possesses three revolute joints. These three link 

trains form two independent closed loops. The 

mechanism is divided into two independent seri- 

al branches by cutting the joint at point 5, as 

4 

2 

5 

cut-inint 

Fig. 4 The manipulator with the equivalent particles 

indicated in Fig. 4. Each rigid body is replaced 

by an equivalent system of 3 particles. Two par- 

ticles are conveniently located at the centers of 

the joints connecting the adjacent bodies in the 

chain, while the Cartesian coordinates of the 

third particle (not shown in Fig. 4) are expressed 

in terms of the coordinates of the other two 

particles with the aid of two distance constraints. 

As shown in Fig. 4, the platform is a multi-joint 

body, therefore, additional particle 5 is located 

at the platform to describe the joint connecting 

the two separated branches. Locating the par- 

ticles belonging to adjacent bodies together at 

the connection joints reduces the total number 

of particles replacing the whole system and leads 

to the automatic elimination of the kinematic 

constraints at these joints. An overall equivalent 

system of 10 particles is constructed. The equa- 

tions of motion are generated recursively along 

each branch as discussed in section 4 while 

additional cut-joint is needed at the grounded 

end of the first branch (the location of particle 7). 

The constraint equations due to cut joints are 

introduced in the form, 

r s - - r s=0 ,  rT--c~=0 (19) 
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Fig. 5 The trajectory of the platform 

where el is a constant known vector. A linear 

system of 20 algebraic equations can be solved 

at every time step to determine 16 unknown ac- 

celeration components of particles 2, .-., 9 as 

well as 4 the unknown reaction forces at the cut- 

joints. The motion is started from the rest posi- 

tion under the action of an external force of 

magnitude 10N applied at the centre of the 

end-effector in the x-direction as well as gravity 

forces. Figure 5 presents the trajectory of the 

platform in the plane of motion. Verification of 

the results is done by comparison with the abso- 

lute coordinate formulation. It should be noted 

that for the absolute coordinate formulation, a 

system of 21+ 18 differential equations of mo- 

tion plus algebraic equations of constraints is 

constructed. Thus a resulting system of 39 dif- 

ferential-algebraic equations should be solved 

at every time step to determine the unknown 

accelerations and reaction forces. The reduction 

in the number of differential equations and in 

turn the number of integrable variables obtained 

using the present formulation is considered as 

an advantage over the absolute coordinate for- 
mulation. 

5. Conclus ions  

In the present study, the dynamic modelling 

of planar mechanisms that consist of a system 

of rigid bodies is carried out using point coordi- 

nates. The system of rigid bodies is replaced by 

a dynamically equivalent constrained system of 

particles. Then, the concepts of linear and angular 

momentums are used to generate the equations 

of motion. However, they are expressed in terms 

of the rectangular Cartesian coordinates of a 

dynamically equivalent constrained system of par- 

ticles. This groups the advantages of the autom- 

atic elimination of the unknown internal con- 

straint forces and describing the general motion 

of the rigid body in terms of a set of Cartesian 

coordinates without either introducing any rota- 

tional coordinates or distributing the external 

forces and force couples over the particles. The 

method results in a reduced system of differenti- 

al-algebraic equations with the absence of the 

inconvenient rotational coordinates. The metho- 

dology is extended to a system of rigid bodies 

with all common types of kinematic joints, re- 

volute or prismatic. An example of a multi-  

branch closed-loop system is chosen which in- 

dicates the generality and simplicity of the pro- 

posed method. 
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